Skip to contents

Layers

Graph neural network layer implementations

layer_gcn()
GCN Convolutional Layer (Kipf & Welling 2016)
layer_gcn_general()
Generalized GCN Layer (Hamilton 2020)
layer_sage()
GraphSAGE Layer (Hamilton et al. 2017)
layer_gat()
Graph Attention Network Layer (Veličković et al. 2018)
layer_gin()
Graph Isomorphism Network Layer (Xu et al. 2019)
layer_regconv()
Regional GCN Convolutional Layer (Guo et al. 2025)

Models

Pre-built graph neural network models

model_gcn()
Multi-layer GCN Model
model_gcn_general()
Multi-layer Generalized GCN Model (Hamilton 2020)
model_sage()
Multi-layer GraphSAGE Model (Hamilton et al. 2017)
model_gat()
Multi-layer Graph Attention Network Model (Veličković et al. 2018)
model_gin()
Multi-layer Graph Isomorphism Network Model (Xu et al. 2019)

Graph Utilities

Functions for constructing and manipulating graphs

graph_split()
Create Train/Validation/Test Split for Graph Data
adj_from_edgelist()
Create Sparse Adjacency Matrix from Edge List
nodes_to_tensor()
Convert Node Features to Tensor
gcn_normalize() adj_row_normalize() add_graph_self_loops()
Add self-loops to a graph

Pooling

Global pooling operations for graph-level representations

Aggregators

Message passing aggregators for combining neighbor features