Regional GCN Convolutional Layer (Guo et al. 2025)
layer_regconv.RdImplements the Regional Graph Convolutional Network (RegConv) layer from Guo et al. (2025):
$$\mathbf{X}^{(l)} = \sigma\left(\left(\mathbf{D}^{-1}\mathbf{A}\mathbf{X}^{(l-1)}\boldsymbol{\Theta}^{(l)} + \mathbf{X}^{(l-1)}\boldsymbol{\Phi}^{(l)}\right)\boldsymbol{\Omega}_{reg}^{(l)} + \boldsymbol{\Psi}_{reg}^{(l)}\right)$$
This layer extends the standard GCN layer by introducing region-specific parameters to handle spatial heterogeneity (spatial regimes). The computation has two stages:
Base GCN transformation: \(\mathbf{D}^{-1}\mathbf{A}\mathbf{X}^{(l-1)}\boldsymbol{\Theta}^{(l)} + \mathbf{X}^{(l-1)}\boldsymbol{\Phi}^{(l)}\)
Region-specific modulation: Element-wise multiplication by \(\boldsymbol{\Omega}_{reg}\) and addition of \(\boldsymbol{\Psi}_{reg}\)
Parameters:
\(\Theta\) (theta):
in_features x out_featurestransforms aggregated neighbor features (global)\(\Phi\) (phi):
in_features x out_featurestransforms node's own features (global)\(\Omega_{reg}\) (omega_reg):
n_regions x out_featuresregion-specific weight modulation\(\Psi_{reg}\) (psi_reg):
n_regions x out_featuresregion-specific bias terms
Arguments
- in_features
Integer. Number of input features per node
- out_features
Integer. Number of output features per node
- n_regions
Integer. Number of spatial regions/regimes
- x
Tensor
n_nodes x in_features. Node feature matrix- adj
Tensor
n_nodes x n_nodes. Adjacency matrix. Expected to be row-normalized \(D^{-1}A\) where \(D\) is the degree matrix. Can be binary or weighted- region_assignments
Tensor
n_nodes. Integer vector with values in1:n_regions, indicating which region each node belongs to. Multiple nodes can belong to the same region- edge_weight
Tensor
n_nodes x n_nodesor NULL. Optional edge weights to apply to the adjacency matrix. If NULL, uses values fromadj. Default: NULL
Details
The RegConv layer is designed for two-stage training:
Stage 1: Train a global GCN to learn \(\Theta\) and \(\Phi\), then freeze these parameters.
Stage 2: Initialize \(\Omega_{reg}\) to all 1s and train region-specific parameters (\(\Omega_{reg}\), \(\Psi_{reg}\)) while keeping \(\Theta\) and \(\Phi\) fixed.
The region-specific parameters allow the model to adjust predictions differently across spatial regimes, enabling the model to capture spatial heterogeneity.
References
Guo, H., Wang, H., Zhu, D., Wu, L., Fotheringham, A. S., & Liu, Y. (2025). RegionGCN: Spatial-Heterogeneity-Aware Graph Convolutional Networks. Annals of the American Association of Geographers, 1–17. doi:10.1080/24694452.2025.2558661