Simulate Spatially Lagged X (SLX) model
sim_slx.Rd
This function simulates the y values of an SLX model, where the dependent variable is influenced by both the original and spatially lagged x variables.
Arguments
- u
an error vector
- xb
predicted x values as calculated by
make_xb()
- wxg
predicted spatial lag effect as calculated by
make_wxg()
Examples
ncol <- 20
n <- ncol^2
listw <- sim_grid_listw(ncol, ncol) # Create spatial weights for a grid
u <- make_error(n, method = "normal") # Simulate random errors
x <- make_x(n, method = "uniform") # Generate x variables
xb <- make_xb(x, c(1, 2)) # Calculate xb using the original x and coefficients
wx <- make_wx(x, listw) # Generate spatially lagged x variables
wxg <- make_wxg(wx, 0.5) # Calculate the effect of the spatial lags
y <- sim_slx(u, xb, wxg) # Simulate the SLX model outcome
df <- data.frame(y, x)
spatialreg::lmSLX(y ~ ., data = df, listw = listw) # Estimate the SLX model
#>
#> Call:
#> lm(y ~ x_1 + lag.x_1, data = df, listw = listw)
#>
#> Coefficients:
#> (Intercept) x_1 lag.x_1
#> 1.2991 1.9596 0.3903
#>