Simulate Spatial Lag Model (SAR)
sim_sar.Rd
Simulate y for a SAR model.
Arguments
- u
an error vector
- xb
predicted x values as calculated by
make_xb()
- listw
a
listw
object generated withsim_grid_listw()
.- rho
the spatial autoregressive coefficient for the spatially lagged dependent variable.
Examples
ncol <- 20
n <- ncol^2
listw <- sim_grid_listw(ncol, ncol) # Create spatial weights for a grid
u <- make_error(n) # Simulate random errors
x <- make_x(
n,
mu = c(0.25, 5),
var = c(1, 0.75),
method = "normal"
) # Generate x variables
# create xb with intercept = 1, beta1 = 2, beta2 = -3
xb <- make_xb(x, c(1, 2, -3))
y <- sim_sar(u, xb, listw)
# combine data
df <- cbind(y = y, x)
# fit SAR model
# Note lambda, x_1, and x_2 estimates.
spatialreg::stsls(y ~ ., df, listw)
#>
#> Call:
#> spatialreg::stsls(formula = y ~ ., data = df, listw = listw)
#>
#> Coefficients:
#> Rho (Intercept) x_1 x_2
#> 0.5066124 1.2694876 2.0348833 -3.0126382
#>